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NOMENCLATURE

a, Arhitrary interlaminar shear coefficients

a,b Vectors of arbitrary interlaminar shear
coefficients

b Plate width

E ,E Longitudinal and transverse Young's moduli of
£k tk k'th lamina, respectively, with respect to

material axes

e Subscript denoting linear-elastic-material
component

e, ,g Vectors of arbitrary displacement coefficients

F' Stress-energy-density function

F' F' Elastic, elasto-plastic, and total stress-fme k fm energy-density functions for the k'th lamina as
a function of lamina inplane stresses,

F? respectively
fmk

F' F' Elastic, elasto-plastic, and total stress-
mek' m energy-density functions for the matrix materiale kk between k'th and (k+l)st lamina as a function of

F' transverse stresses acting between those two
mk layers, respectively

G Matrix material shear modulusm

G kk'th lamina inplane shear modulus with respect
£tk to lamina material axes

h Laminate thickness

p (p=1,2,3) Vectors of arbitrary stress coefficients
p

rN N-dimensional unit vector

K2,Kt ,Kkt Ramberg-Osgood type constants for k'th lamina
k k relative to the material axes

kc Index representing the k'th lamina
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L Plate length

N Total number of laminae in the laminate

N xN y,Nxy Laminate inplane stress resultants

Snt Ramberg-Osgood type exponents for the k'th
k k nk lamina relative to the material axes

Laminate membrane stress resultant vector

p Subscript denoting nonlinear-elastic-material
component

pi (i=l,2,3) Exponents analogous to Ramberg-Osgood-type
kc exponents defined in Reference 17

P4 Ramberg-Osgood-type exponent, defined in
Reference 17

q Heat flux

T Superscript denoting matrix transpose

t Laminate thickness

tfm k'th lamina thickness over which the extensional
ink stresses ax k and aYk and the shearing stress

Txy k act

t Thickness of matrix material between the k'th
Mk and (k+l)st lamina's median-surfaces over which

the interlaminar shear stresses Tzx and yzk
act k k

U" Modified-Reissner functional

UkV k  Median-surface x and y displacement functions of
the k'th lamina, respectively

ujv N-dimensional x and y displacement vectors,
respectively

V Volume

w Lateral displacement funciton of laminate

x,y,z Plate coordinates
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(0) t() Laminate averaged inplane shear stresses
yxy xy ... relative to plate axes

Txy k  Median-surface shearing strains of k'th lamina
relative to plate axes

YZX SY Interlaminar shearing strains acting between the
k YZk median-surfaces of the k'th and (k+l)st laminae

relative to plate axes

eeffk Effective strain defined in Equation (18)

12, , Lamina coefficients of mutual influence relative12'2n12,1 to material axes

t XtY,Xt Coefficients of mutual influence relative to
material axes

o Temperature

K Thermal diffusivity

v et. ,Vt k  Major and minor Poisson's ratios of k'th lamina,
krespec tively, relative to the material axes

a k t Median-surface extensional stresses of k'th
k lamina relative to the material axes

a ,Z Median-surface extensional stresses of the k'th
k Yk lamina relative to the plate aYes

x ,ox Laminate averaged extensional stresses relative
to plate axes

(o) (i)cy a y

t Median-surface shearing stress of k'th laminaitk relative to material axes

r xMedian-surface shearing stress of k'th laminaxYk relative to plate axes
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(0) (1) Laminate averaged inplane shear stress relativexy xy ... to plate axes

T ' T zx Interlaminar shear stress vectors

T(0) 'T(1). .

yz ,yz ' Laminate averaged transverse shearing stresses
relative to plate axes

(0) (1)
TZx , TZX . . .
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PROJECT SUMMARY

CONTRACT NUMBER: F33615-86-C-3218

CONTRACTOR: Anamet Laboratories, Inc.
3400 Investment Blvd.
Hayward, CA 94545-3811

PRINCIPAL INVESTIGATOR: Rocky Richard Arnold, Ph.D.

TITLE OF THE PROJECT: Rapid Thermal Loading of Delaminated
Composite Structures

TECHNICAL DESCRIPTION

The research program proposed herein was directed toward develop-
ing a theoretical approach to the problem of rapid thermal loading
of delaminated composite structure. The structures examined
include flat and shallow-curved plates and cylindrical shells.
Using Hamilton's principle and the Reissner variational theorem,
a new dynamic thermoelastic variational principle was developed.
Application of this principle to both plates and shells provided
the equations of dynamic equilibrium and the associated natural
and geometric boundary conditions. Important physically observ-
able characteristics of composites, not usually found in clas-
sical approaches, were also included in the theory. These
characteristics include transverse shear, material nonlinearity
and delamination mechanisms.

In this Phase I effort, the thermoelastic model was defined
and the governing equations derived for both contiguous and de-
laminated plate and shell structures. Solution of the governing
equations and numerical examples constitutes the major emphasis
of the Phase II work.

COMMERCIAL APPLICATION

The most immediate benefit f'rom the proposed effort will be the
ability to design/analyze d:laminated composite structures with
improved resistance to rapid therm-! loading. This tis direct
application to various military systems, especially aircraft that
may be subject to hostile laser threats. Other potential appli-
cations Include future hypersonic vehicles and civilian transport
aircraft, wherein lower rates of thermal loading are of concern.

i
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1.0 INTRODUCTION

This is the Phase I final report for work accomplished under

U.S. Air Force Contract No. F33615-86-C-3218, as a part of the

Federally-sponsored Small Business Innovation Research (SBIR)

program. The period of technical performance was from July 31,

1986 to January 31, 1987. The research and development effort

documented herein was accomplished for AFWAL/GLXPF.

The primary objective of the Phase I research was to derive

a set of governing equations for both contiguous and delaminated

composite plates and shells subject to intense rapid thermal

heating. These equations are amenable to programming on a digital

computer, which is the primary emphasis of any potential Phase II

work. The objective of this research has been successfully

accomplisied and the assumptions and derivations used to complete

this project are documented within this final report.

2.0 THEORY

The basic structural configurations under consideration

herein a-e the flat plate, shallow-curved plate, and complete

circular shell. Schematic diagrams of these basic aircraft

structures and the coordinate systems used in the ensuing deri-

vations are included in Figure 1. For all structural configura-

tions, the laminated composite is examined in two distinctly

different states; that is, either the composite is undamaged

(contiguous state), or the composite is delaminated presumably

through the action of a rapid thermal pulse. In both cases, the

primary theoretical derivations are identical--differences between

either the contiguous or delaminated composite configurations are

manifested by the appropriate choice of stress and displacement

functions which will be explained in more detail in a latter part

of this report (Section 3.1).

In this section, the basic theoretical derivations, valid

for both contiguous and delaminated composite configurations, are

developed and limiting assumptions stated.

1
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2.1 Statement of Problem and Principal Assumptions

The plate and shell elements consist of N homogeneous and

materially nonlinear anisotropic laminae with each lamina having

thickness t . Each element of a lamina midsurface can undergofink

three translations, two inplane displacements, uk and

v k(k=l,2,...N), and a lateral displacement w which is common to

all laminae. The inplane stresses a , a and -r are assumedXk Yk xYk

constant through the thickness of each lamina.

The bending stiffness of an individual lamina is assumed

negligible compared to that of the laminate; that is, laminae are

assumed to behave as membranes. Consequently, transverse shear

effects are accommodated by permitting relative movement between

the median planes of adjacent laminae. The matrix material

between adjacent laminae midsurfaces is assumed to carry all of

the transverse shear in the y-z and z-x planes. The normal

stress (a) is taken to be negligible in comparison with the

other interlaminar stresses (Tyz ,T ) for the composites plates

considered herein; namely, those that buckle in the linear-elastic

range and become elasto-plastic in the postbuckling range.

The assumptios cited above are known to be valid for the

contiguous composite [1]; however, for a delaminated composite

the normal stress (a ) that would exist at the interface between
z

adjacent laminae that contain the delamination is not necessarily

negligible. During the Phase II work, a closer examination of

this assumption will be accomplished and, if required, suitable

modifications made to the approach proposed herein.

3
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2.2 Strain-Displacement Relations

The ultimate success of any theoretical model is the

appropriate definition of initial assumptions--these initial

assumptions determine the accuracy and utility of the finally-

developed analytical method. For this research, the membrane

strain-displacement relations of Sanders [2] are used. For a

circular cylindrical shell, these relations are:

u + w 2(1)
x ax 2' ax'

Sy = av w + R) (2)
y ay FT 2a

av + au aw aw + Yaw (3)
Yxy ax ay ax ay R ax

For shallow-curved shells, the underlined terms are ignored and

in the case of flat plates, the radius becomes infinite (R-).

Sanders' complete strain-displacement expressions are valid

when (1) the Kirchoff-Love hypothesis holds, (2) middle surface

strains and rotations out of the middle surface are small in

comparison to unity (note: the displacement components are not

necessarily small), and (3) rotations about the normals to the

middle surface are small in comparison to rotations out of the

middle surface.

To allow for the inclusion of transverse strain in the

variational formulation, Equations 1-3 are used to define the

membrane strains in each individual lamina, and the lamina summa-

tions process provides the proper strain-displacement relations

in bending (much in the same way classical lamination theory is

developed). This approach has been used previously in Refer-

ences 1,3-5 wherein a unique model for inclusion of transverse

shear in laminated composites has been shown to be very accurate

in the prediction of initial buckling and plate bending problems.

14
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When the inplane and bending strain-displacement relations are

decoupled in this manner, the Kirchoff-Love hypothesis is effec-

tively removed as an initial assumption and the transverse shear

strain-displacement relations become

= w + Uk+l - Uk
u - ( )

Yzx ax t (4)
Mk

Vw + Vk+lvk (5)Yy a y t Mmk

2.3 Constitutive Relations

The nonlinear elastic stress-strain relations used (in

material coordinates) are based on those of Reference 1 and are

shown below.

'Rk =x +E "tt it a,)n

E, - + * xt + Kt( E 1 (6)G £t
at £tt t.

V + Kt_ (7)
tk E t Et Gk t + t (tt Ik

t £tt n t

T
t t n x2  t n£t ' t( tn,,

= -- t + E-x, a- x + E t at + K tG £t } (8)

I-v Ty z In to  (9)

YZk =Gm m Gn

5
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T Tzx + Km(G J } (10)ZXk G m Gm m k

Equations 9 and 10 reflect the transverse shear present in the

model. Note, in each equation a Ramberg-Osgood [6] type formula-

tion is used to describe the inelastic behavior of the composite

material. These relations or very similar ones have been used in

the solution of several different types of problems [7,8], and in

each case, the resulting numerical model has been shown to be

quite accurate and efficient.

2.4 Modified Hamilton/Relssner Principle

The basis of the analytical procedure developed during this

research is the extension of Hamilton's principle from rigid to

deformable bodies. Hamilton's principle is stated as,

t 2

6 = f (T - U - V)dt = 0 (11)
t1

where t and t2 are arbitrary time values, T is the kinetic energy

and U+V is the total potential energy of the system. The kinetic

energy is the sum of kinetic energies associated with each of the

orthogonal velocities (axial, tangential, and radial); that is,

I a/2 b/2 h/2 au 2 ( 2 (aw 2]dzdydx (12)f f fI [--) ta-a/2 -b/2 -h/2

where p is the mass density of the material. Now, if Hamilton's

principle is modified by replacing the strain energy U with the

Reissner functional U" [9], the variational equation becomes

6
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t2
f (T - U")dt = 0 (13)

ti1

where the Reissner functional is

a/2 b/2 h/2
Uf = f f f F" dzdydx (14)

-a/2 -b/2 -h/2

and F" is the Reissner functional

F' E O t T y t F' (15)
F" =xEx y y xy xy yz yz zxyzx fm

The quantity F' is the stress-energy-density function which

for a laminae is given by

F' =Ff'm + F' (16)
fmk ek  fmP k

where

2 2
Ffm 1 a + t V t + - - + 1 G. it + 9 ,t9.

fek 29Ex. t E. L t G£t EL)X

2
+ t .xt + nt't T xt (17)
( - + Et ) t  tt  + G k (t7

and

K (n1) -F' -(n£+l)E£ 9ef ( - ° ot + 9.t,L9.9.t)
fmPk n 1Ex t I t t x t

7
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Kt (nt-l) a
+ (nt+l)Et Eeff (at- vtx X t +  t'ttt

1 [31 (1-nt )/22 4[ - (1+v t) " (1+,,t.)] £

Kit (n t-l) 2
• (nt+1)G eff (Tat

+ n t ,tt t xt + n X, i Tt gt )} k

The effective strain is defined by

a 2 t + )
effk ) Jt EEt Et)

r tt 2

+ 3 "2(+vt 2(1+ [tL t

+ ( n E,'t + ' £t, x)IZ t + nt. Lt" it.,t )OXT ]}1/ (18)
E G Et Ettt E Gk

For transverse shear

F' = F' + F' (19)Mk mek mPk
8
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where

2 2

Ft = -yz + T z x l  (20)m 2G 2G
ek  m m

and

K in 2 2 (n +1)/2F' = n " . + T 2k (21)

where Equations 6, 7, and 8 apply to inplane behavior and Equa-

tions 9 and 10 are applicable to transverse shear in the laminate.

It should be noted that the derivative of the quantity F' with

respect to any stress component provides the required strain

component.

By combining the strain-displacement relations and consti-

tutive relations of Sections 2.2 and 2.3 with the modified

Hamilton's principle, a complete new variational problem is

defined. The resulting modified Hamilton/Reissner functional is

presented in Appendix A in vector-matrix form [101. It is

stated, but not proven herein, that the first variation of the

modified Hamilton/Reissner functional provides both the governing

equations of dynamic equilibium along with the associated stress-

displacement boundary conditions and the constitutive

relationships.

2.5 Temperature-Distribution History

For each kind of structure examined in this study, the

thermal forcing function is a suddenly applied uniform heat flux

acting over the surface z = -h/2 (see Figure 1) while surface

9
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z = h/2 is presumed to be perfectly insulated. These conditions

are exactly those analyzed by Boley and Barber [11], Kraus [12],

and Lu and Sun [13]. They are selected here for convenient

comparison of present results with those of previous analyses.

The temperature distribution history, given by solution of

the one-dimensional Fourier heat conduction equation, is

e(z,t) = qh t + 1 (1 _ -z

k h2 22 h

2 (_ )n e K(n-r/h)2t (22)
2 2 e cos ni1(-)]2)

Sn= 
n

where q is the heat flux, h is the thickness of the shell, k is

the thermal conductivity, and K is the thermal diffusivity. In

Figure 2, the temperature-distribution through the thickness

corresponding to q = 10 is plotted at intervals of 1/100 of a

thermal period for a duration of one thermal period.

3.0 METHOD O SOLUTION

Extremization of the Reissner functional (Appendix B)

produces the governing equilibrium and constitutive equations and

the consistent natural and/or geometric boundary conditions.

Once these governing equations are obtained, it is necessary to

effect a solution; that is, determine the stresses and displace-

ments throughout the volumes. The exact solution of the nonlinear

system of governing equations is, in general, prohibitive. Thus,

approximation methods must be used. This being the case, the

extremization of the modified Hamilton/Reissner functional may be

used in more direct fashion to effect an approximate solution.

Since the vanishing of the first variation of the modified

Hamilton/Reissner functonal leads to the governing system of

10
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equations and boundary conditions, then it is possible to assume

a spatial distribution and time dependence of the variational

unknowns satisfying desired boundary conditions, integrate out

the spatial dependence, and obtain a system of differential equa-

tions for the time-dependent variational parameters corresponding

the approximate solution of the governing equations. The result-

ing system of nonlinear time-dependent differential equations may

be solved by any number of numerical procedures (for example,

Newton-Raphson for converging to a solution at any particular

time step and Runge-Kutta [14J for solution in the time domain).

The method of solution is outlined in a subsequent section.

Application of the Newton-Raphson iterative technique results

in the set of equations contained in Appendix C. The principal

unknowns are the stresses (fi,1 2, 3 ,a,;) and displacements

(ef, and +), all of which are time dependent. Once the spatial

variation of the variational unknowns is specified (Section 3.1),

the integrations of Appendices B and C can be performed. The

resulting set of equations are symbollically written as

3ext)

where the individual terms are expanded in Appendix D.

3.1 Displacement and Stress Functions

In the more classical procedures, either Minimum Potential

Energy or Complementary Energy, the variational unknowns are

either the displacements or the stresses, respectively. The

final equations involve a relatively small number of unknowns

because either the constitutive relations or the equilibrium

equations have been used to reduce the overall number of governing

equations to be solved. As a consequence, the final equations,

when viewed in a vector-matrix form, wherein the vector of unknown

12



Anamet Laboratories, Inc.

HAYWARD. CALIFORNIA

quantities are either displacement or stress amplitudes, have

coupling matrices which are virtually fully-populated with terms;

i.e., the coupling is strong. However, when the Reissner varia-

tional approach is used, the vector of unknown quantities are

both displacements and stresses representing both equilibrium and

stress-displacement compatibility. The coupling matrix between

the variational unknowns is observed to be very sparse; i.e.,

loosely coupled.

This loose coupling is a problem because an inappropriate

choice of displacement and stress functions can lead to a situa-

tion wherein the computed integral that couples the physical

terms can be zero--this would imply that the computational proce-

dure would not recognize the physical coupling that is present in

the real-life structure. As a consequence of this mathematical

consideration, it is necessary to select a complete set of func-

tions (displacement and stress) that admit coupling between

physical quantities that should be coupled.

It should also be noted that it is possible to select

functions that provide for coupling when it should not occur.

This can also lead to fictitious results. In any event, the

first and foremost requirement to be placed on the selected

displacement and stress functions is that the proper kind of

coupling be maintained between the physical entities of

displacement and stress.

The next requirement to be satisfied by the distribution

functions is that they represent the physical behavior of the

structure under analysis. In practice this is usually not too

difficult in the sense that it is usually easy to select either

trigonometric or polynomic functions that match approximately the

expected displacements and stresses of the structure to be

analyzed. In this sense, for complicated problems, wherein the

exact form of the distributions is not known (as with the present

problem), it is necessary to select several "generic" forms and

experiment with the combined distributions to determine which

ones provide viable solutions without disturbing the need for

13
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proper coupling as discussed previously. At this point, the

selection and verification of displacement and stress functions

used to solve the problem of the buckling, postbuckling, and

crippling of laminated composite shallow shells under combined

axial compression and shear [5] took approximately seven months

of intense effort in spite of the fact that the initial selection

of trial functions was achieved in approximately two weeks. The

issue of loose coupling was a major factor in the time required.

Although not mentioned yet, but just as important, there are

additional requirements that are placed on both displacement and

stress functions. For instance, displacement functions must

satisfy the boundary conditions of the problem under consideration.

Stress functions must satisfy equilibrium across cross-sections

as a minimum (based upon the experience of the principal investi-

gator), although this requirement can be waived under the proper

circumstances.

It should be remembered that in using the Reissner varia-

tional principle, the constitutive relati.ons are not satisfied

concurrently at every point in the structure. At first thought,

this rather pointed observation is disturbing because most knowl-

edgeable enigneers familiar with mechanics would state that the

constitutive relation must be satisfied at every point for the

solution to be considered correct. In actual practice this

presents no particular problem if some ordering of priorities is

kept in mind.

First, the objective in using the Reissner variational

approach is to obtain an accurate knowledge of the state of

displacement in the structure at the minimal computational cost.

This is usually achieved by careful selection of a complete but

modest number of displacement functions which satisfy the boundary

conditions. Stress functions are then cnosen to satisfy equi-

librium across some cross-section or area, but not at every

point. These same stress functions must couple correctly with

the displacement functions in such a way that the finally com-

puted displacement amplitudes and distributions are accurate. In

14
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actual practice it takes a combination of knowledge, intuition,

and perseverance to achieve this end--but it is possible, as

documented in earlier similar efforts [3,4,5].

In the end, when the numerical results are produced, the

stress amplitudes are essentially discarded in the sense that the

numerical values of stress may or may not be accurate--it is not

important because the goal of the approach is to obtain accurate

information about displacement. From displacements the strains

may be readily calculated because the strain-displacement rela-

tions are in general accurate and a single derivative does not

lead *o gross inaccuracies. Stresses, of an accurate nature, can

be obtained via the use of the original complete set of nonlinear

constitutive relations.

The discussions of the preceding paragraphs give an idea of

the difficulties associated with the selection of displacement

and stress functions for use in the Reissner variational principle.

In general, these comments apply to any particular problem; how-

ever, for this particular research concerned with the effects of

delaminations, there are some additional considerations that must

be accounted for. In addition to the unique application of the

Reissner and Hamilton principles, the use of the direct varia-

tional approach to solve a problem which inherently couples local

and global displacement/stress fields is also noted as a signifi-

cant challenge.

It is anticipated that interactions between local and global

displacement/stress fields can occur deleteriously, as discussed

previously. Thus, selection of global and local functions is

potentially a difficult and time consuming process even though

the starting functions seem intuitively obvious; i.e., the local

stress fields near a crack-tip representing a delamination are

generally known.

15
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3.1.1 Contiguous Composite

Based on the earlier work of Stroud and Mayers [15], the

displacements are taken as

u = U1  (24)

v = vln + v 2 ( - 2 (n - 3 ) (25)
2 4 2 4

W = w2 2 (1- 2)(1-n
2 ) + w2 4(1-_2 )(n -n ) + w4 2 ( - (1-n )

(26)

where and n are dimensionless goemetric coordinate parameters

defined as

= 2x/a (27)

and

= 2y/b (28)

For flat plates, the second term for the expression for v is

omitted.

It is apparent that for the linear thermoelastic response of

a plate with unrestrained edges, the 6 tions assumed for inplane

displacements are exact. The transverse-displacement expression

is a fourth-order polynomial with all except three of the coeffi-

cients eliminated by enforcing geometric boundary conditions and

symmetry requirements (that is, vanishing displacement at the

supports and symmetry about the coordinate axes).

The distributions of bending and twisting moments assumed

for the thermoelastic solution are

M = - MT + C NT + [(1-v)(MT - N - M x222(- )n

16



Anamet Laboratories, Inc.

HAYWARD, CALIFORNIA

2 02 24 214 -2

+ M x22[ 2 (1-n10)] + Mx2 4 (1-c2 )(n -n ) + Mx42( -2 )(i-n )

(29)

S2 1n0
MyB = MT + NT + [(1-v)(MT NT  MY22]2 (I

MB=MT+H H N ~y 2 ~*

+ M y22[l-(l- 10 )n 2] + Sy24( 2_-4 )(1-n 2 ) + My4 2 (l- 2)(n 2-n 4

(30)

MxyB = M~yll sin c sin -n +M sin - C sin -n

(31
+My3 sin -- sin - n (31)

3.1.2 Delaminated Composite

For a delaminated composite specimen the out-of-plane dis-

placement w is, in general, a function of the through thickness

coordinate, z, as well as the other spatial coordinates and time;

that is, w = w(z,x,y,t). Equivalently, the out-of-plane displace-

ment is considered to be a function of the lamina identification,

k; thus, each lamina can have a different functional form for the

out-of-plane displacement. For instance, in the local region
around the delamination, a potential choice for displacement

function is

17
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( 2 + 2

= Wd~l + cos T(a 2 +
a

where wd is the amplitude of the delamination, 7 and Y are

spatial coordinates located at the center of the assumed circular

delamination of radius a, and

w = Wglobal + Wlocal

where w globa was, for a contiguous composite, the same as w.

Corresponding to this out-of-plane displacement are local

stress fields analogous to those near a crack tip (see Sih [16],

for instance).

3.2 Iterative Solution Technique in the Time Domain

When, at any one time step subsequent to updating material

properties and temperatures, the governing equations are solved,

then + + 0 and the resulting differential equation is

+ X + Fex t = 0 (32)

Defining

* (33)

then

MY + + Fex t  0 (34)

18
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Equations (33) and (34) can be written as a set of first order

differential equations:

T]: L J Uext] O[+ + = '(35)

The above equation can be solved with the use of the Runge-

Kutta [14] approach.

4.0 RESULTS AND CONCLUSIONS

The objective of this Phase I research was to derive the

equations governing the response of a delaminated composite to a

rapid thermal pulse. The approach taken was one of developing a

variational formulation based on a unique coupling of Hamilton's

and Reissner's variational theorems. The resulting equations

have been cast into a form that is suitable for programming on a

digital computer. The solution of these equations provides a

description of the state of displacement and stress within the

delaminated composite.

19
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APPENDIX A

MODIFIED-HAMILTON/REISSNER FUNCTIONAL

IN VECTOR-MATRIX NOTATION
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Hamilton's principle is stated as

t2  t2
6 (T- U- V)dt = 6 f (T- U")dt = 0 (A-1)
t tI

where the Reissner functional in vector-matrix notation [10] is,

U" = f AT -T -T 1 +T + + 6 + x L + }

fx Jy h1  1 1 fm 2 9 ax ax + ax e

- AT T 'T 'tf m  + + + y tmP2 2y~T 2 2 2 9T ay ay 1__}

PT g -Ty 1 Ty R1

+T WT Q T

2 2 23 P9 ITyfm P21 y g  IT}

+ hT aT ~T ~T -e T 1

y 2 2x

_2 _2 Ta ~ + ~ a +a+h3 X3 3 fm 9 ax ay 9 x ay e+y ax

+J +T -JT P-T -T+ gL- h X W h ~
ax 3 3 3 fm y

+a~ x ay x

" gT ;T ff~ Y +
y ax 9yW

L=I M=I m MM LM L L L ax PTlly - 2 z 22

24



Anamet Laboratories, Inc.

HAYWARD, CALIFORNIA

+T ~T T +
-a C RfT Gm A. za

;T -.T T-
Rb r y G MR y T

3 3 +T -T -T N 3 3

L=1 M=l k=1 i=1 J=l k

3 3 AT - T - z + Pi
I hX t P XD P h]JkL L£=1m=l TmiJk m m m] jmk L L L

(N-i) +T zT -T - T -T P4
-1 (a R xk RX a + TB k dxdy

k=l

(A-2)

and similarly, the kinetic energy is

T xJ{ ym~TY 7 f m Q t + t - y V f m y

NT T +~.}dd
+ y I N at (A-3)
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APPENDIX B

FIRST VARIATION OF THE NODIFIED-HAMILTON/REISSNER FUNCTIONAL

26



Anamet Laboratories, Inc.

HAYWARD, CALIFORNIA

The governing equations which result from taking the first

variation of the modified Hamilton/Reissner functional (Eq. (A-i))

are as follows:

1 ~xf T +++

ax ax tfm dxdy

3+ 1 e + I elL q L + d 1 + A * 1g (B-1)

L=IL

+ +

2+ a

*2 P2 FT I fT iTQTL
~T- T +N T~

2 2Qy tfm Qy R -R2 = 2

1+ T

1 fx 3 t' N ayx Iy f m g dxdy

3 + + i4 l 3 L L+ 3 + 3  t fm y a TL=I i

(B-3)
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xT ax 111 ay ay 9 ~N ti 22 2

+ +T + aT
ay ax axay 9 N f 3 3 d

+ + + q T fT prT

y 2 2 2 tfay F

+ +T- r We2+
~~_ + f f +T pdy=

ax 3 3 3 ftiny R N N fmn y a 2

(B- 4)

+ T q -T -T - a
i h h 5 y x +-f pdxdy = (B-5)x y a t

+T

~T + -T q3 WT Tf a2 2 +
2 h2 h3 + *6 y + T2 2 2 ay

+T
WT -T W p + WT Q T a3  + 1• Q; trm -2 T2 n2 N .R" T y tf m  3 3 ax R

+ f Q tff Qy -- pdxdy = 6 (B-6)
x y y fmi y' at
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-T + +T + + +(N-i)7 5 e + a 2 fy I {P=
k=i

+T -T fT + + + T ~T -T k (P-)
(a x e RB x c a + n B n b)

ffT B t R a } dxdy = (B-7)
x k m x

T ++ -T t + j2r (N-i)
* 8 g+ 6 Y iO~x~ k=l

+T ~T fT +k 
f  Z + + 8T ;T ffT - 8 (P4 -i)

(a x x y k y

Ty km tJ dxdy = (B-8)

where

~- ~T ~ ~ ] PL L dxdy (B-9)ilL = - fxfy 1l PI tr[LI 1L IL

fxfy 'T pT Em [CL2 +C 2 L]PLXLdxdy (B-10);2L. = - f 2 P2 [d2+ 2] LI

3L = - x Y y3 3 tfm [dL3 + C3 L L L dxdy (B-li)
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x 'T PT i acdxdy (B-12)
fx fy 1 1 tfm x a x -

T -T tf dxdy (B-13);2 f= fy X2 2fmya

T (B-14)
3 =  fxy 3 3 Vfm 4 x a-

-T ~T (B-15)

;4 f fxfy 3 3 fm Qy ax

= fxfy aT T t Rx dxdy (B-16)

5 = mxf %%;
-x T -T -T - f(-7

;6J Q; B t Rn dxdy (-7

f ax (N-1) tm Rx Z dxdy (B-18)

S fxfy y fT t y dxdy (B-19)

Say (N-i) 3 y
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=q -2 ff T T t dxdy (B-20)
9x fy Ix m m x

A 2 rf T ftT j ff dxdy (B-21)
10 y m m y

and

3 +T -T- N 3 3
dp ~ fx L= I p p I= i1 J1 (6i1

L~ P k~ ~ ~

L.= I = I X . 2. j i im m m

Lk T iT +
(IJ kipk+ ilK 1pk ) L XL hL

N 3 3 Tf y
+ I Ih mTT[ V~ X h

k1l 1=1 J=1 ml p p p Pmijk IfP'ik nim

1 h 1r Xr Pr '~iL (26t11-1)p1
L=1 r=1 k k

3 3 ;T 5I(p 1i k-1)

t=i 8=1 2.. . .8-ik
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jT tfm FL AL hL }dxdy
jk kc

(B-23)

with

aX T (B-24)

=T- (B-25)
2 clAT 2 P2 t fm IN
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APPENDIX C

NEWTON-RAPHSON ITERATIVE SOLUTION TECHNIQUE
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Application of the Newton-Raphson iterative technique provides

the following equations:

3 G
L=l 1 L

3
=B(1) - * - 3 lLhL - +I (C-I)

L=L

2 L * AL 2 2 .il (L 11 112 3

3 L
L=1 AL

S3

=-eO 3 * - 4 * - [  €3LL £-3 13 (0-3)
L=I1

+ A + + + + (i +

~! i 7 +, ~,T,1 M 3  
+  I'T 1 A 3 * T.17 ;)

3 'a + 8 3 + -) L hi2 + h + +

314



Anamet Laboratories, Inc.

HAYWARD, CALIFORNIA

-T + -T + -+,T T + (C-5)
j Ah 1 + $3 3 a5 1~= 3ih * 3  a' -f9

-T+ + +TA + 6A -rT + IT ++-pT T 06
2 Ah 2  14 3 '16 Ab +w;1)4h3 + 64 (C-6)

(T + ;,T A+ -T .
+ 7 ~J 8 ) 9 2 4~ -- 6

- 014 - +15 - +16 -11

;-T + -T + ( q + b)I

= T - * - * + (C-7)

07 g' $5 e $9 a*

-T + -P b+

= -T wg'- (C-8)
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whe re

~y I -T fN ,T V -_1T dxdy (C-9)

J = ffy IT -T fN +,T tf m yy
= xfy (: P: 2  :) t - yTBy T dxdy (C-10)

= .~ ~ T~ax ay ay a (C-1i)

4 = fxfy (fT paxx 'Tm dxdy (C-12)

=fxfy (Nf2 +~~aay 1IT dxdy (C-13)

=~ fxT aTi

= ~ ~ ~ 2 ixf N 3~ x a )'Ff. dxdy (C-1~4)

(N-i)
S21 fx a* c1 S a

XY kilP4 x k fm fx Z+

S -T (P4-1)

y k m y
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• ( T ffT Bk ff Z) + 2(p 4 -l)

x k x) (P 4 )

• 6,T zT -T a

x k m Z a*

-T -T -T 
(P 2

+ nE R B k x f

+ T -T -T (C-i5)
(a*c Rx gk fx Z~) dxdy (-5

(N-i) Ta

2fxIy k P4 x k m x

+T ;
y km y

;T -T gk ff-2(41

+ T zT -fT --
(a* e R B k t x a
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+ T -R-T - -(P4-2)

~-T -T - - - *(nRy Bk Ry

(b'T T Rf Bi ff ;)}dxdy (0-16)
y ky

4~ fxf (N 1 (1) -1) (a+* T f ffT fkvfxZa+
9Yk=1 4(4 x kmx

+ T -T ffT ff -f 6*(P4-2)

ff -~ -B R *) (b'T ;T R ffnddT(-7
x Bk Rx cay 9k R-y )y(17

10 yP4(4-1)(+*x k m x

+ 6*T WT ffT gk Uf *) 2
y kmy

*(wT Rf Bk 8*i) (a'T f RT ff )dd (C-18)

By x k ffx Zd
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(1 z-T '- Y_ ±*)M

vJJ ' 2 2. my ay

T2 -T
Ix 2 Q 2 y dV ,)dV4-R2 2 2 N fm ~y

= -T f"( 'T +T dV
'13 Rf I 3 3 i'fm 4y ax

v

V
6~ ~ -T T v 2 4y Wm P* a N Y dV,

;1* = SffS (I X3 3T fm ax y---d
v

15 = f f f I X3 3 aQxm
v

1 'T -T - Al IT W)dV
;11 (-R Qytf 2 ~2 N y,

(1A ay-TT+

;17=ffy fm22 By

= ff11 --T*.YX)dV (C- 19)
;1* 8 = ~ f% T y m Pr3 Z3 A3 ay
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and

f ,fT y p +x ' ~ dxdy (C-20)1 2- 1 NI aT x ax fm

-T 'T *N ,T a -' T j * dxdy (C-21)

~ = lr TYT *1T 3y 1 T  +*dxdy (C-22)
2 2= y 3 3 N ax ay fm

al ifm * T A* dxdy (C-23)
fxfy ax ax Efii 9 N I I dI y(-3

= Sx i Z _ fm +, fT 2 2'hl dxdy (C-24)

y ay g N2

(-!I 2T -!IT ) * T p A* dxdy (C-25)

xfy'ay ax + ax ay )fmg N 3 3 3

(N-i)
7 =I  P4ax km x

k=1

+ T fjT:yk ff(P4-1)+ ,T T [T k% "

y kmy
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(CT 'T a )' dxdy (C-26)
xkx

(N-i) + T2fxfy I P4( , a* c x k m f Z a+*
2 k=l

+ ST WT ffT ffE 6,)(P4 -1)

y k m y

( I ffT - N T T yy )
R B kR y dxdy(

* WT +* ;T )dV,

v R 2 2 y ay

B= f f f (_I -T -T tfm fTy WT 4T 4

1 -T T 92 i2 T -T

12111(2fm 2 y N 3Y +y rm) r)

13 =  f f f X3 3 ax

1 1 ~ 8f R fm f2 2 aay )dV

= f f f (1 W T T f i' ')dV
15 V R y El g2 ,2 N
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WaT T 2t 2BfB x *)dV

+

.+ T* ~T ~ y T * d

18= fff R x 3 3 3 tf3

V

+-9 -T -T FT W 
tf x ) V

17 = f /f f ( -R ~T' 82 2 )dVm

ax hN 3 3W *d

= a fxfy x fmQ x ;2 j-

+ '-T &T 
T

V = y m Q y

+T -T f fTT)

ell= ff ' N f'm 7)dV
V

N 3 3
P= -xf I I I ~ 2(6j-l1)

Afq X k=l 1=1 3=1

3 3 A-TPTfF IP1.k

tl1 XX X £ miJk M m

f T I ,T + T )

P P Jq k iPk iqk JPk fmk q q
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+3 3 AT(PlTf5k -

k 1=1 m=l miJk

* 3

T T ~T T TL=I = JM k *ik iJ k tfk hL L

3~ IT .r (5 + ' q ' k q q

3 2T. T ( ip iqjk  q

+ 3 Tf r

= I MMM iLk M fm L L L

L=I ~

IT FT PP xp p pmij k+Dpi

~TT (f 5 ) m]

M= 1 p p mk+

3 AT f T p'(I tT + iT X

L 1 L L L iq k Lk jq k Lk fmkqq

3k3 +T -T Pr f5 k
P1  (P1  IJ hi A I ilk m m m

k k =i m=l k m
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3 3 *T- rTT ~i
1 i M U m m L L

L=1 M=l iLk k  k

3 p pm'Jk + pij) m m

3=AT iT r (f. ~ +  q ) q  q dxdy (C-28)

t= 1
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APPENDIX D

GOVERNING EQUATIONS IN VECTOR-MIATRIX FORM
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